Numéro
Quadrature
Numéro 74, Octobre-Décembre 2009
Page(s) 10 - 22
Section Algèbre
DOI https://doi.org/10.1051/quadrature/2009015
Publié en ligne 4 septembre 2009
  1. N. Berline, A. Plagne et C. Sabbah, éditeurs, Géométrie tropicale, Éditions de l'École polytechnique, Palaiseau, France, 2008, 128 p.
  2. A. Gathmann, "Tropical algebraic geometry", arXiv : math.AG/0601322.
  3. I. Itenberg et O. Viro, "Patchworking algebraic curves disproves the Ragsdale conjecture ", Math. Intelligencer 18 (1996) 19–28. [CrossRef] [MathSciNet]
  4. I. Itenberg, G Mikhalkin et E. Shustin, Tropical Algebraic Geometry, Oberwolfach Seminars Series 35, Birkhäuser, 2007.
  5. G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, in Different faces of geometry, Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York, USA, 2004, pp. 257–300.
  6. G. Mikhalkin, Tropical geometry and its applications, in International Congress of Mathematicians II, Eur. Math. Soc., Zürich, Switzerland, 2006, pp. 827–852.
  7. J. Richter-Gebert, B. Sturmfels et T. Theobald, First steps in tropical geometry, in Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence, USA, 2005, pp. 289–317.
  8. D. Speyer et B. Sturmfels, "Tropical mathematics", Mathematics Magazine. Cours au Clay Mathematics Institute, Park City, Utah, USA, accessible sur http://arxiv.org/abs/math.CO/0408099.
  9. O. Viro, http://www.pdmi.ras.ru/~olegviro/patchworking.html.
  10. O. Viro, Dequantization of real algebraic geometry on logarithmic paper, in European Congress of Mathematics I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, Basel, 2001, pp. 135–146.
  11. O. Viro, "From the sixteenth Hilbert problem to tropical geometry", Japan. J. Math. 3 (2008) 185–214. [CrossRef]