Numéro |
Quadrature
Numéro 74, Octobre-Décembre 2009
|
|
---|---|---|
Page(s) | 10 - 22 | |
Section | Algèbre | |
DOI | https://doi.org/10.1051/quadrature/2009015 | |
Publié en ligne | 4 septembre 2009 |
- N. Berline, A. Plagne et C. Sabbah, éditeurs, Géométrie tropicale, Éditions de l'École polytechnique, Palaiseau, France, 2008, 128 p. [Google Scholar]
- A. Gathmann, "Tropical algebraic geometry", arXiv : math.AG/0601322. [Google Scholar]
- I. Itenberg et O. Viro, "Patchworking algebraic curves disproves the Ragsdale conjecture ", Math. Intelligencer 18 (1996) 19–28. [CrossRef] [MathSciNet] [Google Scholar]
- I. Itenberg, G Mikhalkin et E. Shustin, Tropical Algebraic Geometry, Oberwolfach Seminars Series 35, Birkhäuser, 2007. [Google Scholar]
- G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, in Different faces of geometry, Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York, USA, 2004, pp. 257–300. [Google Scholar]
- G. Mikhalkin, Tropical geometry and its applications, in International Congress of Mathematicians II, Eur. Math. Soc., Zürich, Switzerland, 2006, pp. 827–852. [Google Scholar]
- J. Richter-Gebert, B. Sturmfels et T. Theobald, First steps in tropical geometry, in Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence, USA, 2005, pp. 289–317. [Google Scholar]
- D. Speyer et B. Sturmfels, "Tropical mathematics", Mathematics Magazine. Cours au Clay Mathematics Institute, Park City, Utah, USA, accessible sur http://arxiv.org/abs/math.CO/0408099. [Google Scholar]
- O. Viro, http://www.pdmi.ras.ru/~olegviro/patchworking.html. [Google Scholar]
- O. Viro, Dequantization of real algebraic geometry on logarithmic paper, in European Congress of Mathematics I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, Basel, 2001, pp. 135–146. [Google Scholar]
- O. Viro, "From the sixteenth Hilbert problem to tropical geometry", Japan. J. Math. 3 (2008) 185–214. [CrossRef] [Google Scholar]